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Guideline to this presentation 

  Context and motivation 
  dynamic composition  
  collaborative services 
  service marketplace 

  Problem specification 
  Validation of interfaces 
  Validation of compositions  
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You should retain that 

  Our focus is validation at runtime, 
but our approach can also be applied at design time. 

  Our approach requires two kinds of description: 
  interface behavioural descriptions 
  interface dependencies 

  Our approach is integrated in a UML-based development 
process. 
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Dynamic composition 
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Collaborative services 
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Detailed behaviours 
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Service marketplace 
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Problem specification 

  How to ensure that compositions set up dynamically are correct? 
  Focus on safety properties 

  Unspecified signal 
  Improper termination 
  Deadlock 

  How to reduce the complexity of validation at runtime (discovery 
time)? 
  Can some validation be done at design time? 
  Can we reduce the size of descriptions needed at runtime for validation? 
  Can we limit the complexity of algorithms? 

  How to package the approach for developers?  
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Development tasks and validation 
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Interface validation 

  Compatibility checking 
  Well-formedness 

  prevent poorly designed service roles 
  allow simplifying compatibility checking 

  Compliancy between service role and interfaces 
  projection 
  equivalence between projections and specified interfaces 
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Interface well-formedness 
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Composition validation 

  Service roles might collaborate through multiple interfaces 
with other service roles. 
  Service roles should coordinate their collaborations on interfaces 

consistently. 
  No deadlock can happen between service roles. 
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Interface dependencies 
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Dependency graph 
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Checking sequences 

  Sequence connected interfaces in the same order, 
and with the same exit conditions (if any) 

  Assume A → B where B is responding: 
Then connected A’ and B’ should 
  belong in the same service role 
  follow the same sequence;  

  All interfaces following a choice 
  must be initiating, and 
  connected interfaces must start in parallel 
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Checking sequences - example 
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Ensuring deadlock-freedom 

  The dependency graph of a configuration of service roles should not 
contain cycles that involve external dependencies. 
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Conclusion 

  Contributions 
  Validation techniques suited for runtime 

  incremental approach 
  small sate machines 
  linear algorithm used  

  Easy-to-understand approach 

  Further work 
  Refine the interdependency relation to avoid discarding safe 

compositions 
  Investigate composition of contemporary SOA services  
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