
10/7/10

1

ICT

A Developer-Friendly Approach
for the Validation
of Dynamic Compositions

Jacqueline Floch & Cyril Carrez

6th Workshop on System Analysis and Modelling (SAM 2010)

1

ICT

Guideline to this presentation

  Context and motivation
  dynamic composition
  collaborative services
  service marketplace

  Problem specification
  Validation of interfaces
  Validation of compositions

2

10/7/10

2

ICT

You should retain that

  Our focus is validation at runtime,
but our approach can also be applied at design time.

  Our approach requires two kinds of description:
  interface behavioural descriptions
  interface dependencies

  Our approach is integrated in a UML-based development
process.

3

ICT

Dynamic composition

4

used to
derive

application
variant

noise

position

context

adapts

monitors

 middleware
architecture

models
(plans) adaptable

applications

mobile user

preferred
quality

provided
quality

computing
resources

battery

describe
dependency

user’s
needs

people

services

adaptation
manager

context
manager

communication

discovers

publishes

network QoS

access

describe
dependency

10/7/10

3

ICT

Collaborative services

5

t:
Traveller

h:
Hotel

iResHotel iHotel

iPlane
iResPlane p:

Plane

TravelReservation

rp:ReservePlane

rh:ReserveHotel

Service role

Interface

Collaboration use

Initiating

ICT

Detailed behaviours

6

Idle CheckRooms WaitConfirm

ReserveRoom

MakeOpt
Reservation

Dates

/AvailableRooms

Reference&Dates

Dates

Reserve

TakeOption

Abort

/Reference

/Reference

iHotel_statemachine

VerifyOption
/OK

/AvailableRooms

state

signal reception signal sending

RoomReserved

OptionOnRoom

NoRoom

exit condition

10/7/10

4

ICT

Service marketplace

7

Marketplace
authority

Service participant

Service marketplace

Service specification
repository

Component
repository

Certifies middleware,
service structures and
component compliancy

Specifiers Component developers

Service participant

Publication of
service

specifications

Publication
and release
of service

components

Install
Service

components

compliant

ICT

Problem specification

  How to ensure that compositions set up dynamically are correct?
  Focus on safety properties

  Unspecified signal
  Improper termination
  Deadlock

  How to reduce the complexity of validation at runtime (discovery
time)?
  Can some validation be done at design time?
  Can we reduce the size of descriptions needed at runtime for validation?
  Can we limit the complexity of algorithms?

  How to package the approach for developers?

8

10/7/10

5

ICT

Development tasks and validation

9

Overall service
specification

Interface
specification

Service role
specification

Composition

Composite
collaboration

Elementary
collaboration

State machine diagram

Validation

Interface
well- formedness

Compatibility
between

interfaces

Compliancy between
service role and interfaces

√

Models

√

√

State machine diagram

Consistency of
interface dependencies

NB. All runtime techniques
can also be applied at design
time.

ICT

Interface validation

  Compatibility checking
  Well-formedness

  prevent poorly designed service roles
  allow simplifying compatibility checking

  Compliancy between service role and interfaces
  projection
  equivalence between projections and specified interfaces

10

10/7/10

6

ICT

Interface well-formedness

11

input ambiguity observable behaviour

Ambiguous behaviour

mixed initiatives

Conflicting behaviours

ICT

Composition validation

  Service roles might collaborate through multiple interfaces
with other service roles.
  Service roles should coordinate their collaborations on interfaces

consistently.
  No deadlock can happen between service roles.

12

Traveller
ReservePlane

ReserveHotel
Travel

Agency

iResHotel

iPlane
iResPlane

iHotel

10/7/10

7

ICT

Interface dependencies

13

iResHotel

iResPlane

iResHotel

iResPlane

iResHotel

iResPlane

a) Sequence b) Interdependency c) Parallel

Travel
Agency

iResHotel

iResPlane

Travel
Agency

iResHotel

iResPlane

Travel
Agency

iResHotel

iResPlane

 1. Check Room Avail.
 2. Reserve Room

 3. Check Seat Avail.
 4. Reserve Seat

 1. Check Room Avail.
 3a. Reserve Room

 2. Check Seat Avail.
 3b. Reserve Seat

 a. Check Room Avail.
 b. Reserve Room

 A. Check Seat Avail.
 B. Reserve Seat

TravelAgency first interacts with
the Hotel, and then with the

Plane.

TravelAgency pauses the
interaction with Hotel to check

seats with Plane.

TravelAgency interacts with the
Hotel and the Plane in parallel,

with no pause during the
interaction.

ICT

Dependency graph

14

Traveller
ReservePlane

ReserveHotel
Travel

Agency

iResHotel

iPlane
iResPlane

iHotel

iPlane

dependencies dependencies

iHotel

a) Semantic interface dependencies b) Dependency graph

Dependency
graph

iResHotel iHotel

iResPlane iPlane

External
dependency

iResHotel

iResPlane

10/7/10

8

ICT

Checking sequences

  Sequence connected interfaces in the same order,
and with the same exit conditions (if any)

  Assume A → B where B is responding:
Then connected A’ and B’ should
  belong in the same service role
  follow the same sequence;

  All interfaces following a choice
  must be initiating, and
  connected interfaces must start in parallel

15

ICT

Checking sequences - example

16

iResHotel iHotel

iResPlane iPlane

(a)

Hotel

Plane

Traveller

iResPlane is responding,
an error may occur.

X

iResHotel iHotel

iResPlane iPlane

(b)

Hotel

Plane

Traveller

√

iResPlane is
initiating

10/7/10

9

ICT

Ensuring deadlock-freedom

  The dependency graph of a configuration of service roles should not
contain cycles that involve external dependencies.

17

iResHotel iHotel

iResPlane iPlane

TravelAgency Traveller

(a)

iResHotel iHotel

iResPlane iPlane

TravelAgency Traveller

(b)

ICT

Conclusion

  Contributions
  Validation techniques suited for runtime

  incremental approach
  small sate machines
  linear algorithm used

  Easy-to-understand approach

  Further work
  Refine the interdependency relation to avoid discarding safe

compositions
  Investigate composition of contemporary SOA services

18

