
1/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Design and Development of a CPU Scheduler
Simulator for Educational Purposes Using SDL

Manuel Rodŕıguez-Cayetano

Department of Signal Theory and Telematics Engineering
University of Valladolid, ES-47011 Valladolid, Spain

manuel.rodriguez@tel.uva.es

6th Workshop on System Analysis and Modelling
Oslo, October 4th-5th 2010

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

2/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Summary

1 CPU Scheduling Overview
CPU Scheduling Basics
Related work

2 The SDL CPU Scheduler Simulator
Requirements
Behavior Overview
Simulator structure
Detailed Behavior

3 The CPU Scheduler Simulator Graphical User Interface

4 Conclusions and Further Work

3/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (I)

CPU scheduling: deciding which of the ready processes is
to be allocated the CPU

Different selection criteria ⇒ different scheduling
algorithms

Two types of scheduling algorithms:

one queue algorithms: appropriate when all the processes
belong to the same class (same scheduling requirements)
multilevel queue algorithms: appropriate for processes
belonging to several classes (different scheduling
requirements)

Every algorithm may favor one class of process over
another due its properties:

performance evaluation parameters (throughput,
turnaround time, waiting time, . . .) are used for comparing
CPU scheduling algorithms

3/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (I)

CPU scheduling: deciding which of the ready processes is
to be allocated the CPU

Different selection criteria ⇒ different scheduling
algorithms

Two types of scheduling algorithms:

one queue algorithms: appropriate when all the processes
belong to the same class (same scheduling requirements)
multilevel queue algorithms: appropriate for processes
belonging to several classes (different scheduling
requirements)

Every algorithm may favor one class of process over
another due its properties:

performance evaluation parameters (throughput,
turnaround time, waiting time, . . .) are used for comparing
CPU scheduling algorithms

3/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (I)

CPU scheduling: deciding which of the ready processes is
to be allocated the CPU

Different selection criteria ⇒ different scheduling
algorithms

Two types of scheduling algorithms:

one queue algorithms: appropriate when all the processes
belong to the same class (same scheduling requirements)
multilevel queue algorithms: appropriate for processes
belonging to several classes (different scheduling
requirements)

Every algorithm may favor one class of process over
another due its properties:

performance evaluation parameters (throughput,
turnaround time, waiting time, . . .) are used for comparing
CPU scheduling algorithms

3/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (I)

CPU scheduling: deciding which of the ready processes is
to be allocated the CPU

Different selection criteria ⇒ different scheduling
algorithms

Two types of scheduling algorithms:

one queue algorithms: appropriate when all the processes
belong to the same class (same scheduling requirements)
multilevel queue algorithms: appropriate for processes
belonging to several classes (different scheduling
requirements)

Every algorithm may favor one class of process over
another due its properties:

performance evaluation parameters (throughput,
turnaround time, waiting time, . . .) are used for comparing
CPU scheduling algorithms

4/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (II)

Selecting an algorithm appropriate for a process workload
⇒ evaluation of the algorithms based on values of the
performance evaluation parameters

for example, select the algorithm that produces the least
mean waiting time for a process workload

Several evaluation methods:

deterministic modeling: results only valid for the concrete
(deterministic) workload used
queuing models based: classes of algorithms and statistical
distributions of process parameters limited, results not
accurate
simulation: can support deterministic and statistical based
workloads, results can be more accurate than those
obtained using queuing models

4/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (II)

Selecting an algorithm appropriate for a process workload
⇒ evaluation of the algorithms based on values of the
performance evaluation parameters

for example, select the algorithm that produces the least
mean waiting time for a process workload

Several evaluation methods:

deterministic modeling: results only valid for the concrete
(deterministic) workload used
queuing models based: classes of algorithms and statistical
distributions of process parameters limited, results not
accurate
simulation: can support deterministic and statistical based
workloads, results can be more accurate than those
obtained using queuing models

5/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (III)

Simulation consist of programming a model of the
computer system that behaves like the actual system (at
least regarding CPU scheduling) ⇒ modeling:

arrival, ready and finished queues
clock
. . .

Design, coding and debugging of a simulator are usually a
major task

appropriate specification techniques (like SDL) should be
used instead of just coding

5/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

CPU Scheduling Basics (III)

Simulation consist of programming a model of the
computer system that behaves like the actual system (at
least regarding CPU scheduling) ⇒ modeling:

arrival, ready and finished queues
clock
. . .

Design, coding and debugging of a simulator are usually a
major task

appropriate specification techniques (like SDL) should be
used instead of just coding

6/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Related work and motivation

Several CPU scheduling simulators have been previously
developed: CPU Scheduling Simulator, CPU Scheduler
Application, Process Scheduling Simulator, MOSS
Scheduling Simulator . . .

Main shortcomings of these simulators:

algorithms specific for real-time processes are not supported
multilevel queue algorithms are not supported, only
single-queue ones
deterministic workloads (useful for testing special
scenarios) not supported in some of them

These shortcomings have led to the development of a CPU
scheduling simulator using SDL (sdlCPUSched)

6/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Related work and motivation

Several CPU scheduling simulators have been previously
developed: CPU Scheduling Simulator, CPU Scheduler
Application, Process Scheduling Simulator, MOSS
Scheduling Simulator . . .

Main shortcomings of these simulators:

algorithms specific for real-time processes are not supported
multilevel queue algorithms are not supported, only
single-queue ones
deterministic workloads (useful for testing special
scenarios) not supported in some of them

These shortcomings have led to the development of a CPU
scheduling simulator using SDL (sdlCPUSched)

6/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

CPU Scheduling
Basics

Related work

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Related work and motivation

Several CPU scheduling simulators have been previously
developed: CPU Scheduling Simulator, CPU Scheduler
Application, Process Scheduling Simulator, MOSS
Scheduling Simulator . . .

Main shortcomings of these simulators:

algorithms specific for real-time processes are not supported
multilevel queue algorithms are not supported, only
single-queue ones
deterministic workloads (useful for testing special
scenarios) not supported in some of them

These shortcomings have led to the development of a CPU
scheduling simulator using SDL (sdlCPUSched)

7/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : requirements and assumptions

Main requirements:

simulator for educational purposes, mainly used for
behavior and performance analysis of CPU scheduling
algorithms
support for non real-time and real-time algorithms
support for multilevel queue algorithms (number of queues,
queue algorithm and queue priority can be configured)

Main assumptions (to simplify the development of the
simulator):

all the processes characteristics are independent
only one CPU burst and zero I/O bursts per process

7/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : requirements and assumptions

Main requirements:

simulator for educational purposes, mainly used for
behavior and performance analysis of CPU scheduling
algorithms
support for non real-time and real-time algorithms
support for multilevel queue algorithms (number of queues,
queue algorithm and queue priority can be configured)

Main assumptions (to simplify the development of the
simulator):

all the processes characteristics are independent
only one CPU burst and zero I/O bursts per process

8/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : behavior overview

Signal-based communication between the simulator and its
environment

interactions are mainly asynchronous (only synchronous
during the phase of simulation configuration)

Input signals:

simulation configuration (algorithm simulated, process
parameters. . .)
simulation control (start, stop, pause. . .)

Output signals:

confirmation of simulation configuration
notification of simulation events (if verbose mode is
selected)
values of per-process and global statistics

Scenarios of interactions between the simulator and its
environment modeled by MSCs

main scenarios: algorithm configuration, process workload
configuration and simulation execution

8/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : behavior overview

Signal-based communication between the simulator and its
environment

interactions are mainly asynchronous (only synchronous
during the phase of simulation configuration)

Input signals:

simulation configuration (algorithm simulated, process
parameters. . .)
simulation control (start, stop, pause. . .)

Output signals:

confirmation of simulation configuration
notification of simulation events (if verbose mode is
selected)
values of per-process and global statistics

Scenarios of interactions between the simulator and its
environment modeled by MSCs

main scenarios: algorithm configuration, process workload
configuration and simulation execution

8/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : behavior overview

Signal-based communication between the simulator and its
environment

interactions are mainly asynchronous (only synchronous
during the phase of simulation configuration)

Input signals:

simulation configuration (algorithm simulated, process
parameters. . .)
simulation control (start, stop, pause. . .)

Output signals:

confirmation of simulation configuration
notification of simulation events (if verbose mode is
selected)
values of per-process and global statistics

Scenarios of interactions between the simulator and its
environment modeled by MSCs

main scenarios: algorithm configuration, process workload
configuration and simulation execution

8/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : behavior overview

Signal-based communication between the simulator and its
environment

interactions are mainly asynchronous (only synchronous
during the phase of simulation configuration)

Input signals:

simulation configuration (algorithm simulated, process
parameters. . .)
simulation control (start, stop, pause. . .)

Output signals:

confirmation of simulation configuration
notification of simulation events (if verbose mode is
selected)
values of per-process and global statistics

Scenarios of interactions between the simulator and its
environment modeled by MSCs

main scenarios: algorithm configuration, process workload
configuration and simulation execution

9/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

sdlCPUSched : example of an scenario

CPUSchedulerenvironment

1

1loop <1, globalStatistics>

2

2loop <1, numberOfProcessStatistics>

1

1loop <1, numberOfProcesses>

1

1opt

3

3loop<0,numberOfListsModified>

2

2loop <1,numberOfEvents>

simulationReadyToStart

MSC CPUSchedulerOverview_running

globalStatistic

(IP, port, statisticName, statisticMsg, value)

simulationEnd

(IP, port, clock)

sendList

(IP, port, clock, listyKind, list,listId)

schedulerEnd_c

(IP, port)

sendList

(IP, port, clock, listyKind, list, listId)

processStatistic

(IP, port, processId, processPeriodNum, statisticName, statisticMsg, value)

printEvent

(IP,port, clock, processId, processPeriodNum, enventType, msg)

10/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Simulator structure: motivation issues

To keep independent intra-queue and inter-queue
scheduling functions ⇒ two process types:

MasterSchedulerType for inter-queue scheduling, one
instance
SlaveSchedulerType for intra-queue scheduling, as many
instances as ready queues

To minimize the amount of code not automatically
generated from the SDL specification:

one simulator program for all the users using the TCP
communication module included in the SDL tool

programming communication functions with the system
environment is avoided
no need to use extra coding in C for sending the port
number of every instance of the user’s simulator program
to its GUI (using files, running program parameters, . . .)
one control process required to route signals of one user
to the corresponding scheduling processes

10/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Simulator structure: motivation issues

To keep independent intra-queue and inter-queue
scheduling functions ⇒ two process types:

MasterSchedulerType for inter-queue scheduling, one
instance
SlaveSchedulerType for intra-queue scheduling, as many
instances as ready queues

To minimize the amount of code not automatically
generated from the SDL specification:

one simulator program for all the users using the TCP
communication module included in the SDL tool

programming communication functions with the system
environment is avoided
no need to use extra coding in C for sending the port
number of every instance of the user’s simulator program
to its GUI (using files, running program parameters, . . .)
one control process required to route signals of one user
to the corresponding scheduling processes

10/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Simulator structure: motivation issues

To keep independent intra-queue and inter-queue
scheduling functions ⇒ two process types:

MasterSchedulerType for inter-queue scheduling, one
instance
SlaveSchedulerType for intra-queue scheduling, as many
instances as ready queues

To minimize the amount of code not automatically
generated from the SDL specification:

one simulator program for all the users using the TCP
communication module included in the SDL tool

programming communication functions with the system
environment is avoided
no need to use extra coding in C for sending the port
number of every instance of the user’s simulator program
to its GUI (using files, running program parameters, . . .)
one control process required to route signals of one user
to the corresponding scheduling processes

10/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Simulator structure: motivation issues

To keep independent intra-queue and inter-queue
scheduling functions ⇒ two process types:

MasterSchedulerType for inter-queue scheduling, one
instance
SlaveSchedulerType for intra-queue scheduling, as many
instances as ready queues

To minimize the amount of code not automatically
generated from the SDL specification:

one simulator program for all the users using the TCP
communication module included in the SDL tool

programming communication functions with the system
environment is avoided
no need to use extra coding in C for sending the port
number of every instance of the user’s simulator program
to its GUI (using files, running program parameters, . . .)
one control process required to route signals of one user
to the corresponding scheduling processes

11/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Simulator structure: CPUSchedulerBlockType
block type CPUSchedulerBlockType 1(1)

Synonym CPUSchedulerBlockType.sbt_Id charstring =
’$Id: CPUSchedulerBlockType.sbt,v 1.2 2010/03/11 18:36:02 manrod Exp $’;

 control: ControlType

 masterScheduler(0,):
MasterSchedulerType

slaveScheduler(0,):
SlaveSchedulerType

 ControlType

MasterSchedulerType

ctrl_scheduler_G

schedulerReady,
errorSignal,
clientIdSignal,
schedulerEnd_c,
(output_sl)

(control_input_sl)

Control_Env_R

(control_input_sl)

schedulerReady,
errorSignal,
clientIdSignal,
schedulerEnd_c

ControlType_G

Master_Env_R

(output_sl)

Master_Env_G

master_slave_R

algorithmEnd,
deactivateQueueACK

startAlgorithm,
abortAlgorithm,
getList,
quantumSignal,
apropiative,
finaltime,
activateQueue,
procedure
 updateReadyList

slave_master_G

master_slave_G

slave_env_R

sendList,
errorSignal

slave_env_G

control_scheduler_R

(scheduler_input_sl)

schedulerEnd

ControlType_G

Master_Control_G

12/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Process Type functions
controlType process type:

creating a masterScheduler process for a simulation
requested by one user
dispatching signals coming from different users to the
corresponding masterScheduler process

masterSchedulerType:
simulation configuration
inter-queues algorithm (the maximum priority non-empty
ready queue is activated)
access control of the ready queues shared variables

slaveSchedulerType:
simulation of a simple (one ready queue) scheduling
algorithm

finding process arrivals (storing every arrived process in
the ready queue)
selecting a process from the ready queue to be executed
(leaves the ready queue)
interrupting a process and returning it to the ready queue
terminating a process when its CPU burst is completed
(storing the process in the finished queue)

12/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Process Type functions
controlType process type:

creating a masterScheduler process for a simulation
requested by one user
dispatching signals coming from different users to the
corresponding masterScheduler process

masterSchedulerType:
simulation configuration
inter-queues algorithm (the maximum priority non-empty
ready queue is activated)
access control of the ready queues shared variables

slaveSchedulerType:
simulation of a simple (one ready queue) scheduling
algorithm

finding process arrivals (storing every arrived process in
the ready queue)
selecting a process from the ready queue to be executed
(leaves the ready queue)
interrupting a process and returning it to the ready queue
terminating a process when its CPU burst is completed
(storing the process in the finished queue)

12/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Process Type functions
controlType process type:

creating a masterScheduler process for a simulation
requested by one user
dispatching signals coming from different users to the
corresponding masterScheduler process

masterSchedulerType:
simulation configuration
inter-queues algorithm (the maximum priority non-empty
ready queue is activated)
access control of the ready queues shared variables

slaveSchedulerType:
simulation of a simple (one ready queue) scheduling
algorithm

finding process arrivals (storing every arrived process in
the ready queue)
selecting a process from the ready queue to be executed
(leaves the ready queue)
interrupting a process and returning it to the ready queue
terminating a process when its CPU burst is completed
(storing the process in the finished queue)

13/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Procedures relating to single-queue algorithms

Two types of behavior in single queue scheduling
algorithms:

behavior common to all the algorithms: included in the
genericAlgorithm procedure
algorithm-dependent behavior: included in algorithm
specific procedures (one per single-queue algorithm)

Low level tasks (for example, managing process queues and
updating the clock) are specified in auxiliary procedures
(findArrivals, executeProcess, interruptProcess, etc.)

main behavior of the algorithm is clearly specified without
unnecessary low-level details

13/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Procedures relating to single-queue algorithms

Two types of behavior in single queue scheduling
algorithms:

behavior common to all the algorithms: included in the
genericAlgorithm procedure
algorithm-dependent behavior: included in algorithm
specific procedures (one per single-queue algorithm)

Low level tasks (for example, managing process queues and
updating the clock) are specified in auxiliary procedures
(findArrivals, executeProcess, interruptProcess, etc.)

main behavior of the algorithm is clearly specified without
unnecessary low-level details

14/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

genericAlgorithm procedure specification (I)

;FPAR
 in/out readyList listType,
 in readyListId Integer,
 in/out runningProcess nodeData,
 in/out processInExec Boolean,
 in/out nextArrivalT Real,
 in/out clock Real,
 contextSaveT,
 contextLoadT Real,
 verboseMode Boolean,
 language languageType,
 clientData clientDataStruct;
RETURNS endCauseType;

procedure genericAlgorithm 1(2)
DCL aborting Boolean := False,
 abortCause endCauseType,
 auxNode nodeData,
 algActive Boolean := False,
 maxPriArrivalQueueId Integer := 0;

DCL genericAlgorithm.spd_Id charstring :=
’ $Id: genericAlgorithm.spd,v 1.7 2010/09/07 09:32:45 manrod Exp $’;

virtual

deactivated

procedure
updateReadyList

−

activateQueue(
clock,
nextArrivalT)

algActive
:= True

(not
(call emptyList(

readyList))) and
(not (nextArrivalT =

clock))

checkingArrivals checkingExec

*(deactivated)

procedure
updateReadyList

checkingArrivals

aborting = False

call
emptyArrivalList to

PARENT

ENDOK

auxNode:=
call

getArrivalListHead
to PARENT

processInExec

maxPriArrivalQueueId := call
findMaxPriNonEmptyQueue

to PARENT

(maxPriArrivalQueueId /=
readyListId)

updateIdleCPUT
(auxNode!arrivalTime −clock)

to PARENT

clock := auxNode!arrivalTime

findArrivals(verboseMode,
 aborting,

readyList, readyListId,
Empty,

clock, nextArrivalT,
algActive, language,

clientData) to PARENT

checkingActive

not(aborting)
and not(algActive)

processInExec
interruptProcess(
verboseMode,

 aborting,
readyList, readyListId,

runningProcess,
processInExec, clock,

contextSaveT,
nextArrivalT, algActive,

False,language,
clientData) to PARENT

deactivateQueueACK(
clock)

deactivated

not(aborting)
and algActive

checkingExec

algActive := False

clock := auxNode!arrivalTime

findArrivals(verboseMode,
 aborting,

readyList, readyListId,
mkstring(runningProcess),

clock, nextArrivalT,
algActive, language,

clientData) to PARENT

*

abortAlgorithm(
abortCause)

abortCause

aborting=True

ERR

checkingExec

aborting=True

ERR

False

True

True

False

False

False

true

false

True

True

15/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

genericAlgorithm procedure specification (II)

;FPAR
 in/out readyList listType,
 in readyListId Integer,
 in/out runningProcess nodeData,
 in/out processInExec Boolean,
 in/out nextArrivalT Real,
 in/out clock Real,
 contextSaveT,
 contextLoadT Real,
 verboseMode Boolean,
 language languageType,
 clientData clientDataStruct;
RETURNS endCauseType;

procedure genericAlgorithm 2(2)

executingProc interruptingProc

aborting = false aborting = false

execProcess(verboseMode,
aborting, readyList,

readyListId,
runningProcess,

processInExec, clock,
contextLoadT, nextArrivalT,

algActive, language,
clientData) to PARENT

interruptProcess(verboseMode,
 aborting, readyList,

 readyListId,
runningProcess,

processInExec, clock,
contextSaveT, nextArrivalT,
algActive, True, language,

clientData) to PARENT

checkingActive checkingActive

16/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

Requirements

Behavior
Overview

Simulator
structure

Detailed
Behavior

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

An example of an specific algorithm procedure

inherits genericAlgorithm;

procedure fcfs 1(1)

DCL fcfs.spd_Id charstring :=
’ $Id: fcfs.spd,v 1.6 2010/03/25 18:27:51 manrod Exp $’;

checkingExec

aborting=False

processInExec

executingProc

((call precCompare(
runningProcess!

remainingExecT+clock,
nextArrivalT)) /= LESS)

AND (NOT(nextArrivalT =
NOMOREPROCESSES)) terminateProcess(verboseMode,

 aborting,
runningProcess, processInExec,

clock,
language, clientData) to PARENT

call
 emptyList(
readyList)

checkingArrivals

decrRemainingExecT(
runningProcess,

nextArrivalT−clock) to
PARENT

False

True

False

False

True

True

17/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

The CPU Scheduler Simulator Graphical User
Interface: tkCPUSched

A graphical user interface (GUI) has been developed to
simplify the access to the simulator functionalities

simulator program generated from the SDL specification is
only accessible through a TCP socket

GUI developed using Tcl/Tk language
interpreted language that provides rapid development of
cross-platform graphical user interfaces

GUI module for parsing simulator outgoing signals:
format of the signals interchanged with the environment:
Telelogic ASCII encoding (TCP communications module)

example: {1}{’schedulerEnd c’}{{’127.0.0.1’,50205}}
parsing module based on an automatically generated parser
and lexical analyzer

parser and lexical analyzer based on a grammar specific to
the ASCII encoding: changes in the signal encoding ⇒
modifying the grammar and re-generating the parser and
lexical analyzer
GUI can be adapted to support a simulator generated by
different SDL case tools

17/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

The CPU Scheduler Simulator Graphical User
Interface: tkCPUSched

A graphical user interface (GUI) has been developed to
simplify the access to the simulator functionalities

simulator program generated from the SDL specification is
only accessible through a TCP socket

GUI developed using Tcl/Tk language
interpreted language that provides rapid development of
cross-platform graphical user interfaces

GUI module for parsing simulator outgoing signals:
format of the signals interchanged with the environment:
Telelogic ASCII encoding (TCP communications module)

example: {1}{’schedulerEnd c’}{{’127.0.0.1’,50205}}
parsing module based on an automatically generated parser
and lexical analyzer

parser and lexical analyzer based on a grammar specific to
the ASCII encoding: changes in the signal encoding ⇒
modifying the grammar and re-generating the parser and
lexical analyzer
GUI can be adapted to support a simulator generated by
different SDL case tools

17/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

The CPU Scheduler Simulator Graphical User
Interface: tkCPUSched

A graphical user interface (GUI) has been developed to
simplify the access to the simulator functionalities

simulator program generated from the SDL specification is
only accessible through a TCP socket

GUI developed using Tcl/Tk language
interpreted language that provides rapid development of
cross-platform graphical user interfaces

GUI module for parsing simulator outgoing signals:
format of the signals interchanged with the environment:
Telelogic ASCII encoding (TCP communications module)

example: {1}{’schedulerEnd c’}{{’127.0.0.1’,50205}}
parsing module based on an automatically generated parser
and lexical analyzer

parser and lexical analyzer based on a grammar specific to
the ASCII encoding: changes in the signal encoding ⇒
modifying the grammar and re-generating the parser and
lexical analyzer
GUI can be adapted to support a simulator generated by
different SDL case tools

17/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

The CPU Scheduler Simulator Graphical User
Interface: tkCPUSched

A graphical user interface (GUI) has been developed to
simplify the access to the simulator functionalities

simulator program generated from the SDL specification is
only accessible through a TCP socket

GUI developed using Tcl/Tk language
interpreted language that provides rapid development of
cross-platform graphical user interfaces

GUI module for parsing simulator outgoing signals:
format of the signals interchanged with the environment:
Telelogic ASCII encoding (TCP communications module)

example: {1}{’schedulerEnd c’}{{’127.0.0.1’,50205}}
parsing module based on an automatically generated parser
and lexical analyzer

parser and lexical analyzer based on a grammar specific to
the ASCII encoding: changes in the signal encoding ⇒
modifying the grammar and re-generating the parser and
lexical analyzer
GUI can be adapted to support a simulator generated by
different SDL case tools

18/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

tkCPUSched : main window

Additional features:
queue status shown during simulation (and process statistic
values)
plotting of Gantt charts during simulation

18/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

tkCPUSched : main window

Additional features:
queue status shown during simulation (and process statistic
values)
plotting of Gantt charts during simulation

19/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (I)

Simulator features:
simulator capable of simulating the behavior of

one-queue scheduling algorithms (appropriate for one class
of processes workloads)
multilevel queue algorithms (appropriate for workloads
consisting of processes with different scheduling
requirements)

simulation results (per-process and global statistics) and
simulation events shown in a human-readable format using
a graphical user interface

results and events can also be saved in files

graphical user interface developed with the Tcl/Tk
language: rapid development and cross-platform support
parsing of signals outgoing simulator program based on a
grammar definition of their encoding method

change of the encoding method only implies minimum
changes in the graphical user interface (adapting the
grammar and re-generating the parser and lexical analyzer)
GUI customizable to interact with simulators generated by
different SDL case tools

19/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (I)

Simulator features:
simulator capable of simulating the behavior of

one-queue scheduling algorithms (appropriate for one class
of processes workloads)
multilevel queue algorithms (appropriate for workloads
consisting of processes with different scheduling
requirements)

simulation results (per-process and global statistics) and
simulation events shown in a human-readable format using
a graphical user interface

results and events can also be saved in files

graphical user interface developed with the Tcl/Tk
language: rapid development and cross-platform support
parsing of signals outgoing simulator program based on a
grammar definition of their encoding method

change of the encoding method only implies minimum
changes in the graphical user interface (adapting the
grammar and re-generating the parser and lexical analyzer)
GUI customizable to interact with simulators generated by
different SDL case tools

19/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (I)

Simulator features:
simulator capable of simulating the behavior of

one-queue scheduling algorithms (appropriate for one class
of processes workloads)
multilevel queue algorithms (appropriate for workloads
consisting of processes with different scheduling
requirements)

simulation results (per-process and global statistics) and
simulation events shown in a human-readable format using
a graphical user interface

results and events can also be saved in files

graphical user interface developed with the Tcl/Tk
language: rapid development and cross-platform support
parsing of signals outgoing simulator program based on a
grammar definition of their encoding method

change of the encoding method only implies minimum
changes in the graphical user interface (adapting the
grammar and re-generating the parser and lexical analyzer)
GUI customizable to interact with simulators generated by
different SDL case tools

19/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (I)

Simulator features:
simulator capable of simulating the behavior of

one-queue scheduling algorithms (appropriate for one class
of processes workloads)
multilevel queue algorithms (appropriate for workloads
consisting of processes with different scheduling
requirements)

simulation results (per-process and global statistics) and
simulation events shown in a human-readable format using
a graphical user interface

results and events can also be saved in files

graphical user interface developed with the Tcl/Tk
language: rapid development and cross-platform support
parsing of signals outgoing simulator program based on a
grammar definition of their encoding method

change of the encoding method only implies minimum
changes in the graphical user interface (adapting the
grammar and re-generating the parser and lexical analyzer)
GUI customizable to interact with simulators generated by
different SDL case tools

20/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (II)

Experiences in the simulator development with SDL:
behavior specification of a scheduling algorithm is easier in
SDL than in a programming language

a flow chart describing high-level algorithm behavior can
be used to obtain SDL specifications
SDL graphical syntax is more expressive than code for the
description of an algorithm behavior

development and testing of concurrent applications easier
in SDL

signal or procedure based communication in SDL versus
external communications libraries, ad-hoc methods or
shared variables in a programming language
communications between processes explicitly shown
(messages that can be exchanged, the sources and
destinations allowed . . .)
powerful testing tools, including tracing of messages
exchanged among processes (for example, MSC trace)

20/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Conclusions (II)

Experiences in the simulator development with SDL:
behavior specification of a scheduling algorithm is easier in
SDL than in a programming language

a flow chart describing high-level algorithm behavior can
be used to obtain SDL specifications
SDL graphical syntax is more expressive than code for the
description of an algorithm behavior

development and testing of concurrent applications easier
in SDL

signal or procedure based communication in SDL versus
external communications libraries, ad-hoc methods or
shared variables in a programming language
communications between processes explicitly shown
(messages that can be exchanged, the sources and
destinations allowed . . .)
powerful testing tools, including tracing of messages
exchanged among processes (for example, MSC trace)

21/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Further work

Improvements for the current version of the simulator:

adding more complex algorithms, like multilevel feedback
queue scheduling
multi-processor / multi-core algorithms
support of processes with several CPU and I/O bursts

21/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Further work

Improvements for the current version of the simulator:

adding more complex algorithms, like multilevel feedback
queue scheduling
multi-processor / multi-core algorithms
support of processes with several CPU and I/O bursts

21/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Further work

Improvements for the current version of the simulator:

adding more complex algorithms, like multilevel feedback
queue scheduling
multi-processor / multi-core algorithms
support of processes with several CPU and I/O bursts

22/22

Design and
Development

of a CPU
Scheduler

Simulator for
Educational

Purposes
Using SDL

Manuel
Rodŕıguez-
Cayetano

Summary

CPU
Scheduling
Overview

The SDL CPU
Scheduler
Simulator

The CPU
Scheduler
Simulator
Graphical
User Interface

Conclusions
and Further
Work

Questions?

	Summary
	CPU Scheduling Overview
	CPU Scheduling Basics
	Related work

	The SDL CPU Scheduler Simulator
	Requirements
	Behavior Overview
	Simulator structure
	Detailed Behavior

	The CPU Scheduler Simulator Graphical User Interface
	Conclusions and Further Work

