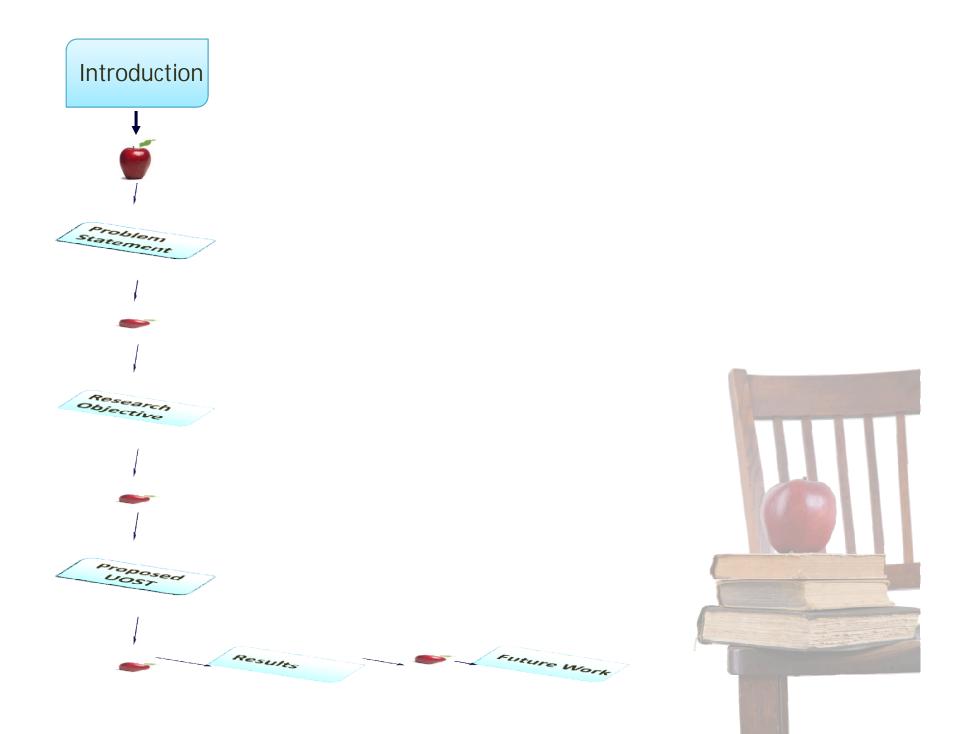
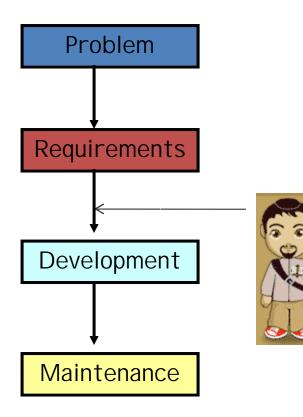
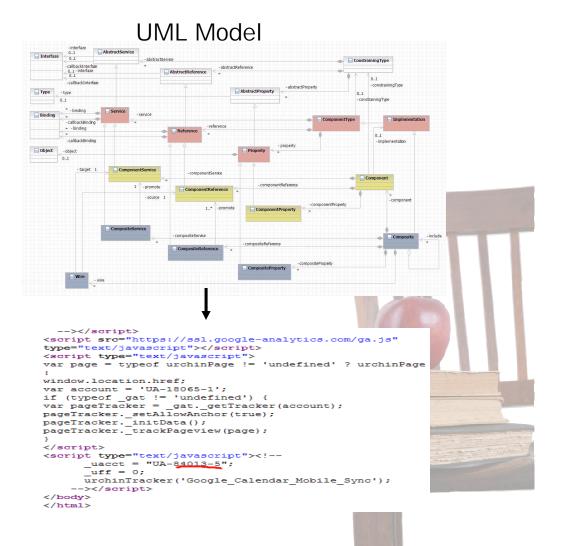
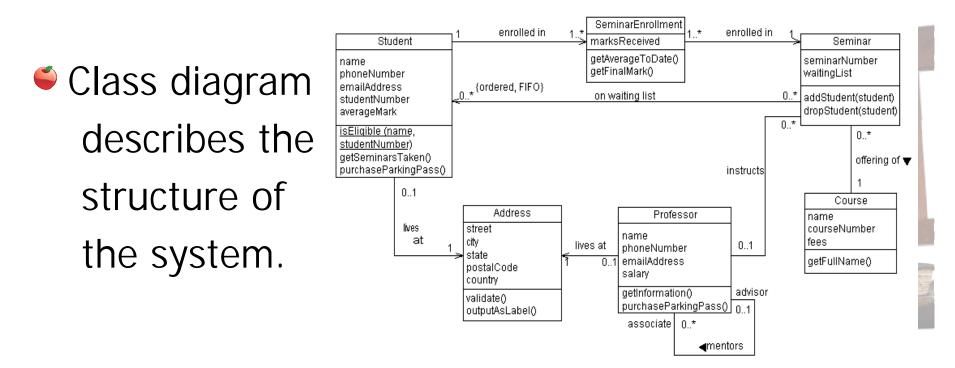

UOST: UML/OCL Aggressive Slicing Technique For Efficient Verification of Models


SAM 2010

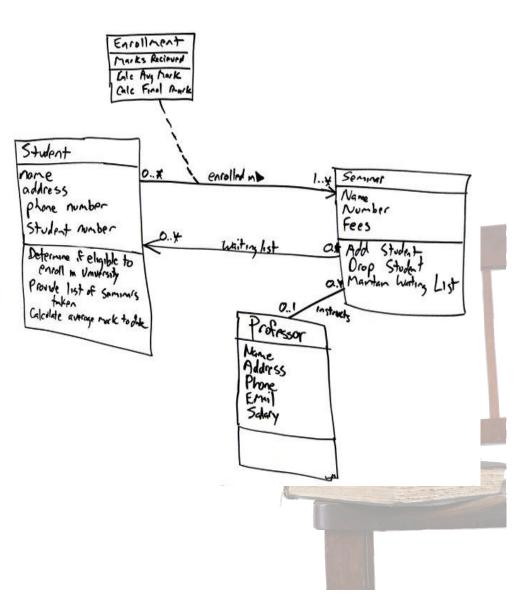
Asadullah Shaikh University of Southern Denmark ashaikh@mmmi.sdu.dk

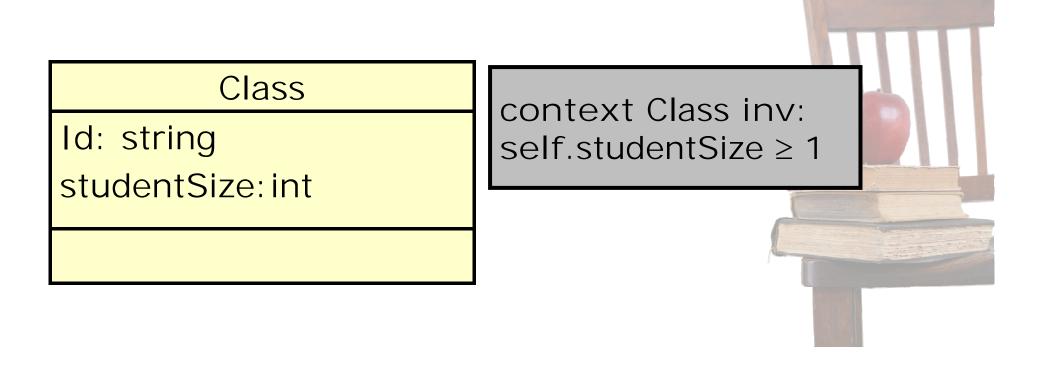




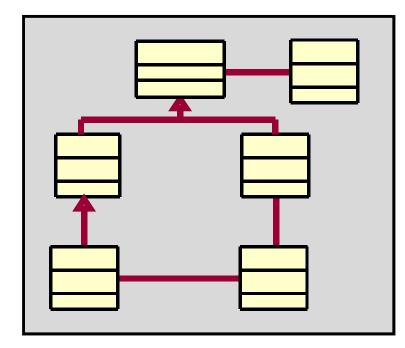


Software Development Life Cycle




UML--includes a set of graphical notation techniques to create abstract models of specific systems, referred to as UML model.

- Class Diagram
 Attributes
 Operations
 It consists source
- It consists several relationships
 - Association
 - Aggregation
 - Composition
 - Generalization etc


OCL-- declarative language for describing rules upon UML models notation to express the integrity constraints which cannot be captured by the graphical UML notation.

- Verification of Model--ensures that the model is correct and does not contain any kind of errors. "Are we building the model right".
- Validation of Model-- ensures that the model accomplish all the requirement. "Are we building the right model".

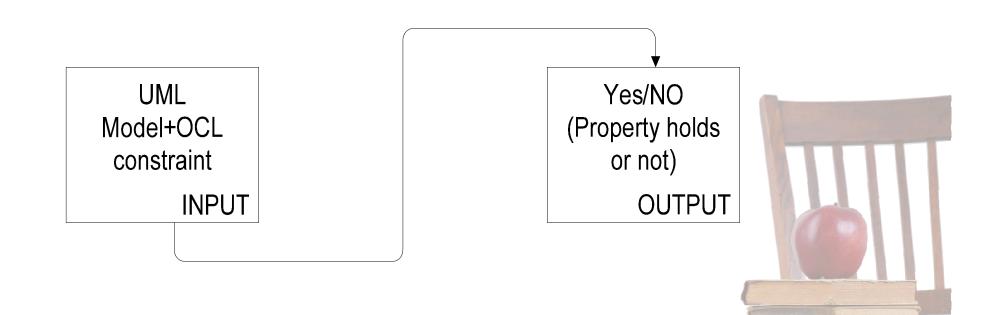
"We will focus on Verification Process of UML/OCL Model"

How UML/OCL Model Look Like...

Graphical constraints:

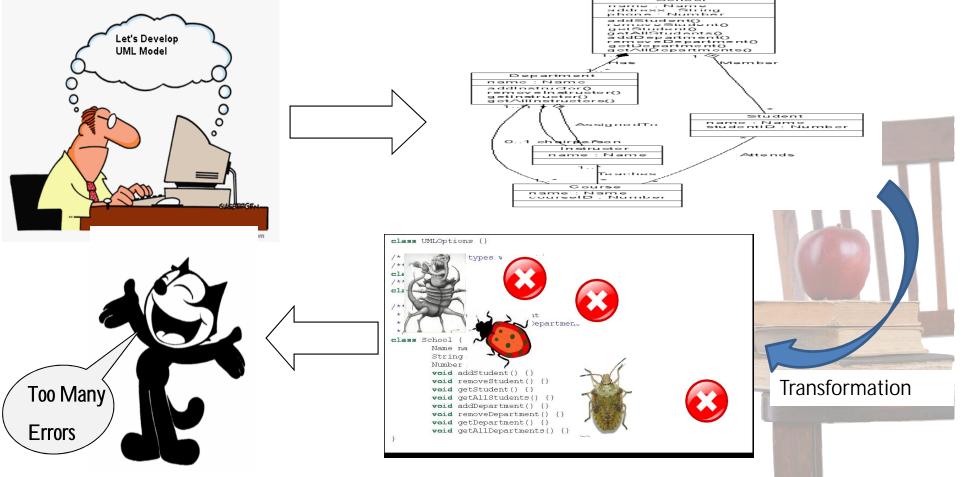

Multiplicities of associations

Inheritance hierarchies

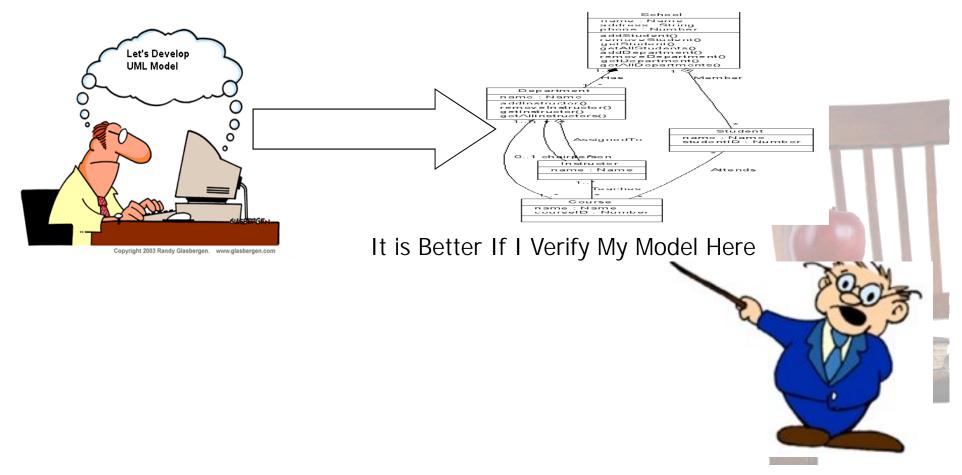

context Person inv: self.age ≥ 0

Textual constraints: Complex class invariants

Model Correctness (Verification)



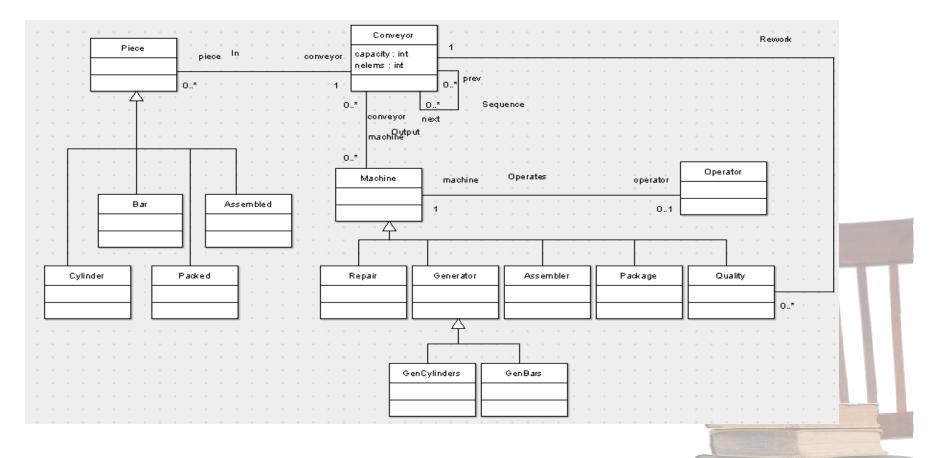
INPUT & OUTPUT


WHY Verification & Validation

- Error in the model means Error in the code
- Avoiding the Errors at initial stage

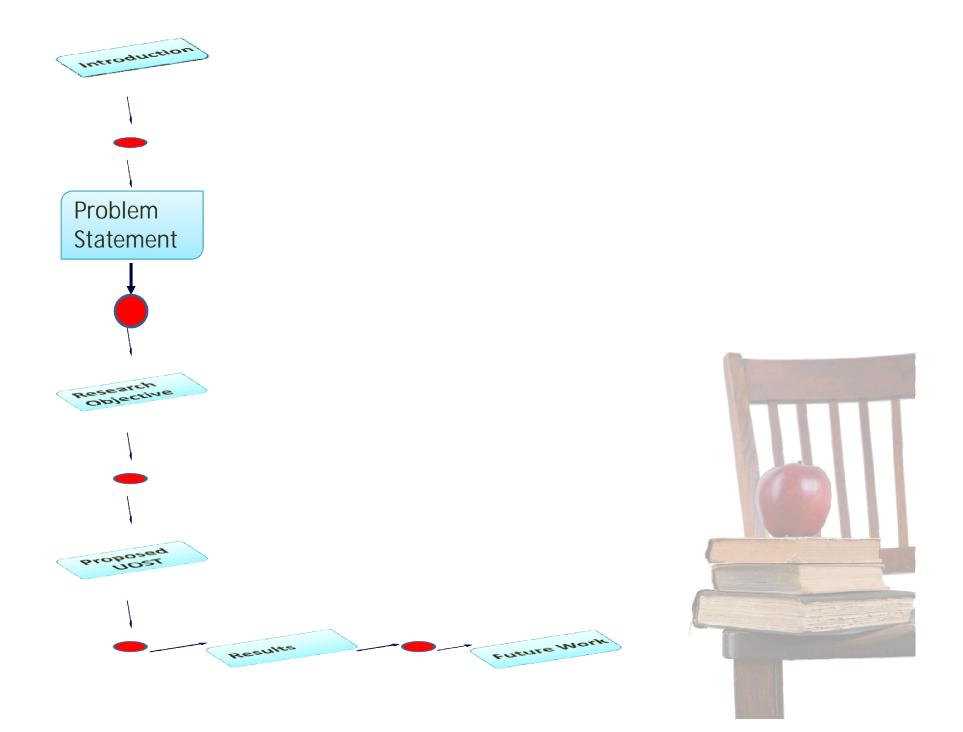
WHY Verification & Validation

Error in the model means Error in the codeAvoiding the Errors at initial stage



Example (Estimated time)

	Pie									1	÷.		i.		Conveyor					÷.	1	1		1			1								
	_		_				ce.	ļņ	1			com	veyo	r. C n	apacity : int elerns : int							•													
		CI	ass										1			0*	prev																		
1		1	1	1	1	1				1		1		0*				_	luen	ce	1	1													
				,		,									conveyor _n Outout	ed .																			
		ļ		1		1																													
		1											Г	0*						1						1				Г		Dpe	rato	or	
															Machine	mac	hine			-							op	erat	br	┢					
1	1	1	1	1	ł	1	1	1	1	1	1	1	1		[1				1		1	1	1				0	01	$\left[\right]$					
			· · ·	· · · ·					U^ .						Class: Piece	Class: Piece U.* 1 O* conveyor n machine 0*	Class: Piece U* 1 0* 0* 0* 0* Machine mac 1	Class: Piece U* 1 U* 0* prev O* 0* 0* 0* conveyor next machine 0* Machine machine 1	Class: Piece U* 1 U* O* prev O* O* Sec conveyor next machine Machine machine 1	Class: Piece U* 0* prev 0* 0* Sequent conveyor next machine 0* 1	Class: Piece U* 1 0* prev 0* 0* Sequence conveyor next machine machine Opera	Class: Piece U* 0* prev 0* O* Sequence conveyor next machine 0* Machine machine Operates 1	Class: Piece	Class: Piece	Class: Piece U* 0* prev 0* Sequence conveyor next machine Operates Machine machine Operates	Class: Piece U* prev U* Sequence O* Sequence Conveyor next machine O* Machine Machine 1	Class: Piece U* 1 0* prev O* Sequence conveyor next machine 0perates 1	Class: Piece U.* 1 U.* Prev O* Sequence conveyor next machine machine Operates op 1	Class: Piece	Class: Piece	Class: Piece U.* U.* U.* U.* U.* U.* U.* U.*	Class: Piece U.* 1 0* 0* Sequence Conveyor next machine 0* 0* 0* 0* 0* 0* 0* 0	Class: Piece U* U* U* U* U* U* Sequence conveyor next machine Output U* O* Operates Operator Op	Class: Piece U* U* U* U* Sequence Conveyor next machine Machine Machine Machine 1 0.1	Class: Piece


• UMLtoCSP takes 92 second to verify the property.

Example (Estimated time)

•New classes that do not affect the property being verified.

•2 hours (did not verified any property)

Identifying the Problem

Verification of small models is supported by most of tools and methods .

So where is the problem?

Identifying the Problem

- Verification of large and complex UML/OCL model.
- Efficient and scalable method.
- At certain point, available verification methods stop working.
 - CPU time
 - Memory
 - Allocated resources

Identifying V&V Tools

V&V Tools Available in a market.

- UMLtoCSP
- HOL-OCL
- MOVA
- ALLOY
- UML2ALLOY
- USE
- CQC (Is method)
- Other methods (not implemented)

Proposed Benchmark

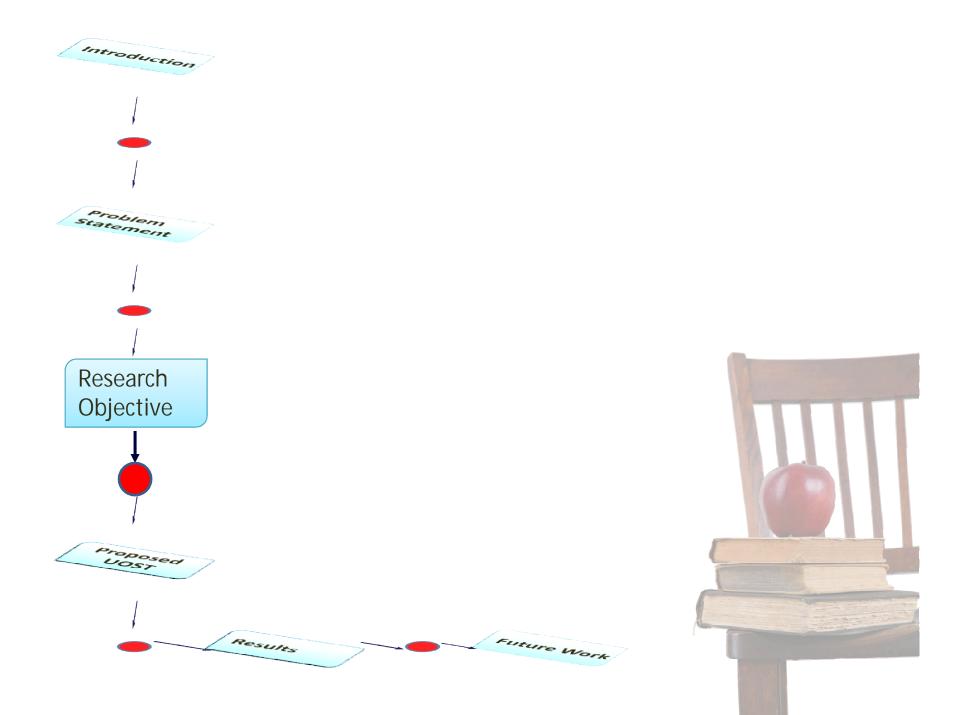

Example	Classes	Associations	Attributes	Invariants	Verification Time
Atom-Molecule	2	1	6	1	0.03s
Paper-Researcher	2	2	5	4	0.04s
Coach	15	10	27	6	5008.76s
Production System	50	30	72	5	3605.35s
Company	100	100	100	100	6233.35s
Script 1	100	53	122	2	Time-out
Script 2	500	227	522	5	Time-out
Script 3	1000	505	1022	5	Time-out
Cycle 1	10	10	10	10	Time-out
Cycle 2	100	100	100	100	Time-out

Table 1 Description of the UML/OCL benchmarks and Verification Time.

TT	51	TT+ST = TVT
125ms	47ms.	172ms
187ms	78ms	265ms
281ms	172ms	453ms
473ms	190ms	663ms
671ms	344ms	1015ms
969ms	484ms	1453ms
Fime-out	Time-out	Time-out
	125ms 187ms 281ms 473ms 671ms 969ms 	125ms 47ms. 187ms 78ms 281ms 172ms 473ms 190ms 671ms 344ms 969ms 484ms

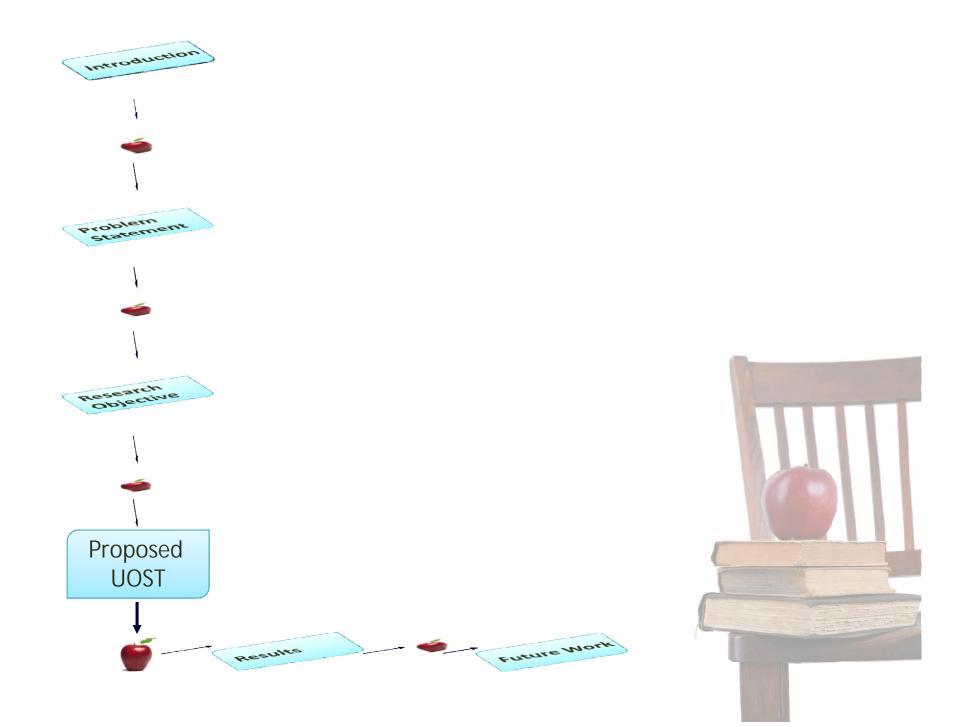
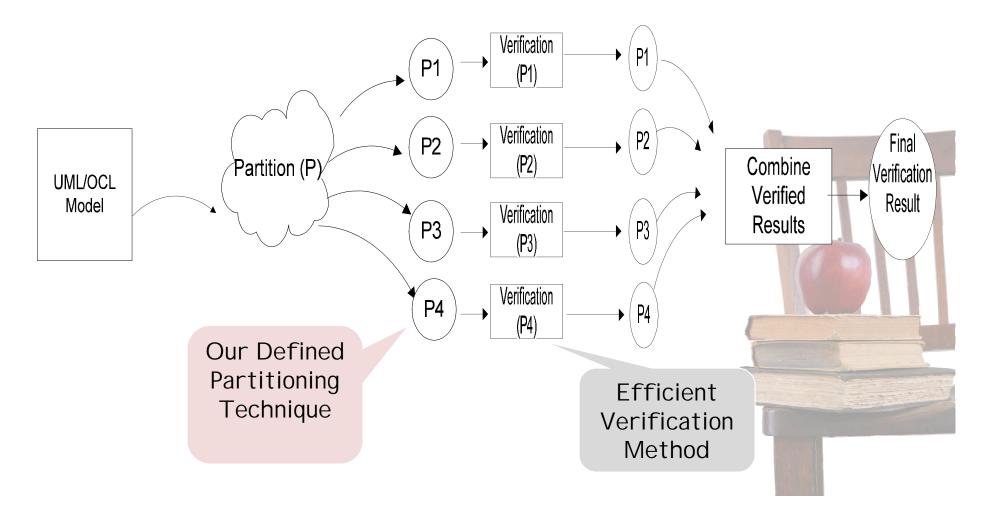

TTTranslation TimeST Solving TimeTVTTotal Verification Time

Table 2 Description of experimental results (Alloy).



Research Objective

- To design a Framework/Technique for improving the scalability for verification process.
- Efficient verification technique usable to large models.
 - Abstract irrelevant components of the system.
 - Partition model into independent submodels.

Slicing a model into small fragments (submodels).

- Our goal is to determine whether the input class diagram has legal instances.
- Two different notions of satisfiability is considered:
 - Strong and Weak satisfiability.

- Given a Model `m', into m1, m2, m3...mn submodels, where m is satisfiable if all m1, m2, m3...mn submodels are satisfiable.
- Each submodel is a subset of the OCL constraints.

Each slice is less constrained than the original model.

It is necessary to ensure that if the original model is unsatisfiable.

Algorithm 2 Slicing Algorithm

Input: Property being verified

Output: A partition P of the model M into non-necessarily disjoint submodels

1: $G \leftarrow BuildFlowGraph(M)$ {Creating the flowgraph}	
2: {Cluster the OCL constraints}	
3: for each pair of constraints c_1, c_2 in M do	
4: if ConstraintSupport($M, c1$) \cap ConstraintSupport($M, c2$) $\neq \emptyset$ then	
5: MergeInSameCluster $(c1, c2)$	
6: end if	
7: end for	
8: {Work on each cluster of constraints separately}	
9: for each cluster of constraints Cl do	
10: $subModel \leftarrow empty model {Initialize the subModel to be empty}$	
11: {Initialize worklist}	
12: workList \leftarrow Union of the ConstraintSupport of all constraints in the cluster	r
13: while workList not empty do	
14: $node \leftarrow first(workList)$ {Take first element from workList and remove it	}
15: workList \leftarrow workList \setminus node	1
16: for each subclass or superclass c of <i>node</i> do	
17: $subModel \leftarrow subModel \cup \{c\}$	
18: if c was not before in the partition then	
19: workList \leftarrow workList $\cup \{c\}$	
20: end if	
21: end for	
22: for each class c loosely or tightly connected to node do	
23: if <i>Property</i> = weak SAT and tightly coupled then	
24: $subModel \leftarrow subModel \cup \{c\}$	
25: else if <i>Property</i> = strong SAT and tightly coupled then	
26: workList \leftarrow workList $\cup \{c\}$	
27: end if	
28: end for	
29: end while	
30: end for	

Cluster of Constraints

The constraint support is the set of classes restricted by the constraint.

Clustering of the constraint.

Identifying the constraint or a group of constraints restricting the same model element.

Constraint Support

Local and Global Constraint.

Local: If it can be evaluated by examining only the values of the attributes in one object of class C.

Global: if the constraint are examined multiple objects of the same class.

Constraint Support

Invariant	Support	Attributes	Navigations
MaxCoachSize	Coach, Trip, Passenger	Coach.noOfSeats	tripscoach, tripspassengers
ticketNumberPositive	Ticket	Ticket.(number)	None
NonNegativeAge	Passenger	Passenger.age	None
Table 1. Suppor	t, attributes and navigati	ons in the running	example.

Flow graph Concept

We have used a flow graph that captures the dependencies of the elements within the UML/OCL class diagram.

Each vertex is a class and each arc is a relationship.

UML relationship	Loosely/Tightly Coupled	Edge
Association: Lower bound ≥ 1 (e.g. 1*)	Tightly Coupled	\rightarrow
Association: Lower bound = 0 (e.g. 03)	Loosely Coupled	>
Generalization	Tightly Coupled	
Aggregation	Tightly Coupled	
	6 1 1	

 Table 2. Edge Concept of Flowgraph

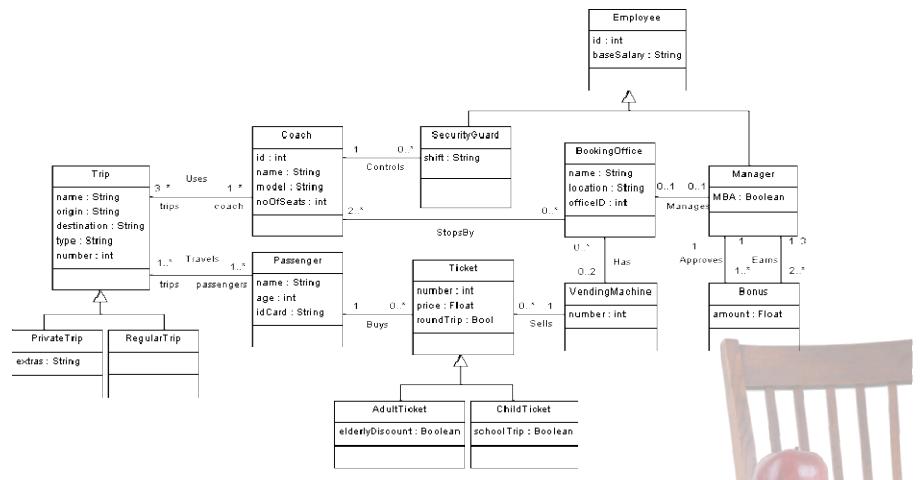
Algorithm 1 Flowgraph Creation

Input: A model M Output: A labeled directed graph $G = \langle V, E \rangle$

1: {Start with the empty graph}

2: Let $V \leftarrow \emptyset$ and $E \leftarrow \emptyset$

- 3: {Add all classes of the model to the flowgraph}
- 4: for class c in model M do

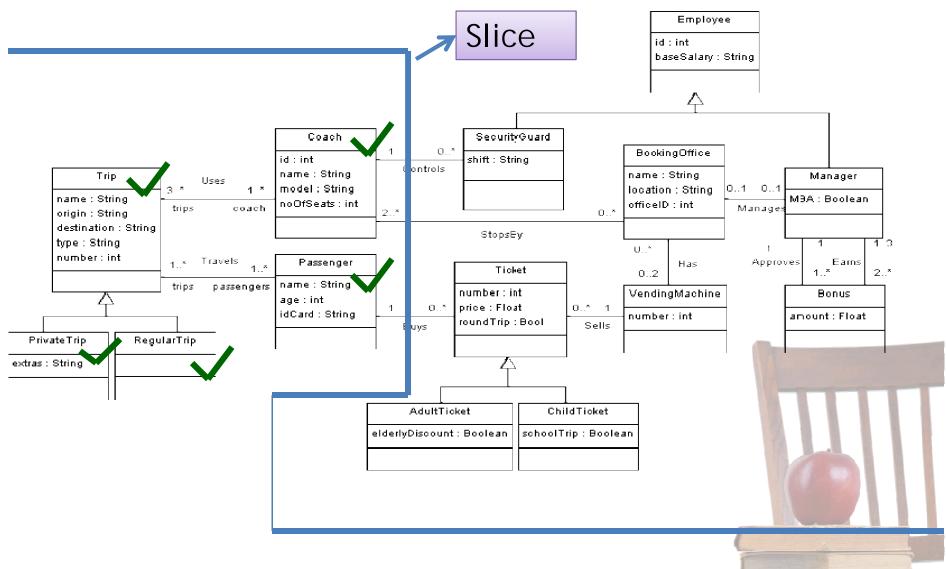

5:
$$V \leftarrow V \cup \{c\}$$

6: end for

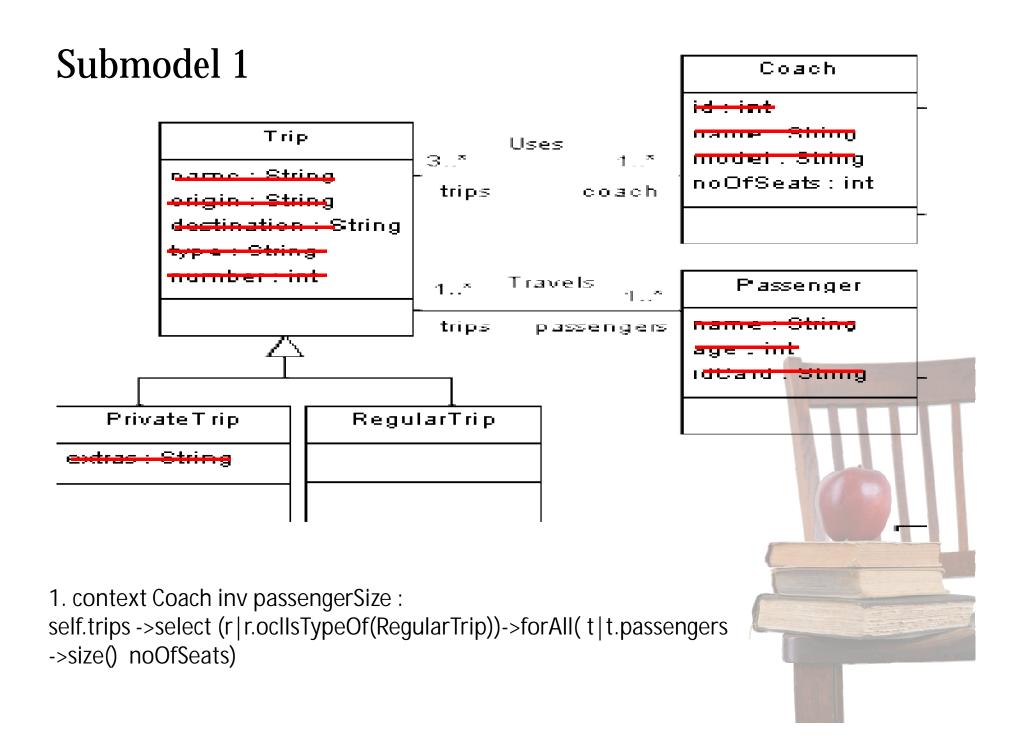
- 7: {Create incoming and outgoing arcs in the flowgraph}
- 8: for each association end A in model M do
- 9: $E \leftarrow (x, y)$ where x is the type of the association end and y is the type of the other class in the association
- 10: if the lower bound of the multiplicity of A is ≥ 1 then
- 11: Label the arc (x, y) as tightly associated
- 12: else if the multiplicity A is lower bound = 0 then
- 13: Label the arc (x, y) as loosely associated
- 14: end if
- 15: end for
- 16: for each generalization, aggregation and composition G between classes x and y do
- 17: $E \leftarrow E \cup \{(x, y)\} \cup \{(y, x)\}$
- 18: Label the arcs (x, y) and (y, x) as tightly associated
- 19: end for

Example (Model Coach)

1. context Coach inv passengerSize :


self.trips ->select (r|r.ocllsTypeOf(RegularTrip))->forAll(t|t.passengers

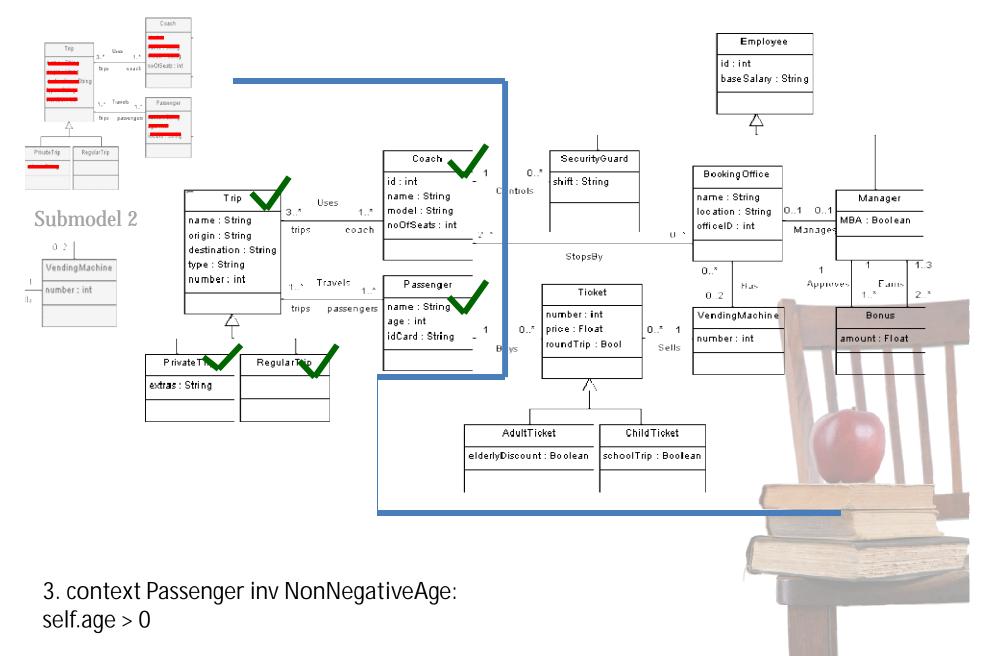
->size() noOfSeats)

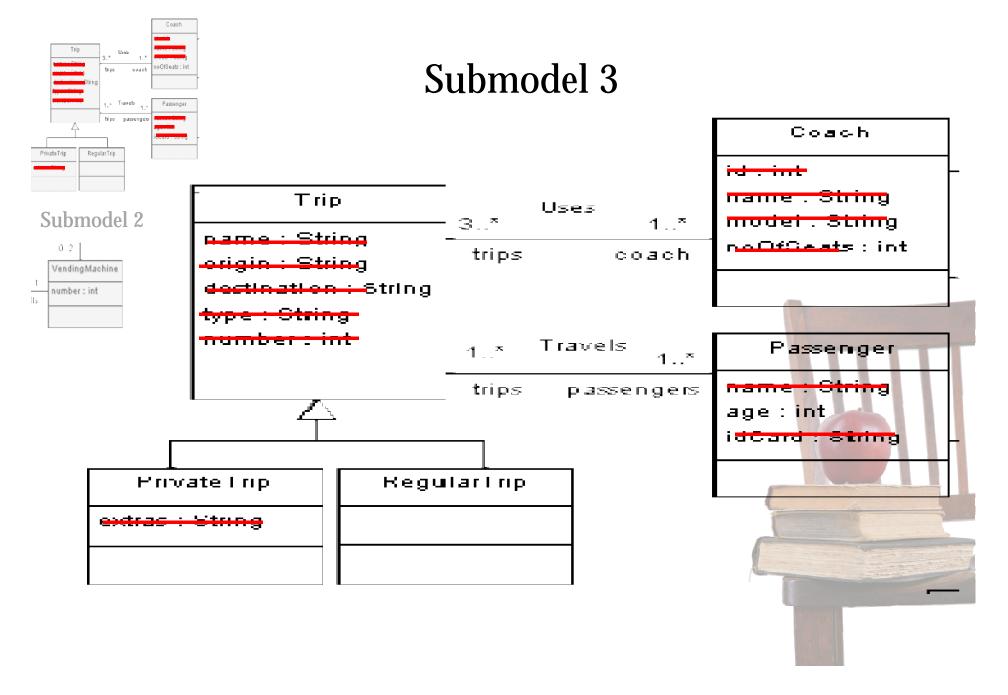

2. context VendingMachine inv UniqueNumber: VendingMachine ::allInstances() ->isUnique (t|t.number)


3. context Passenger inv NonNegativeAge:

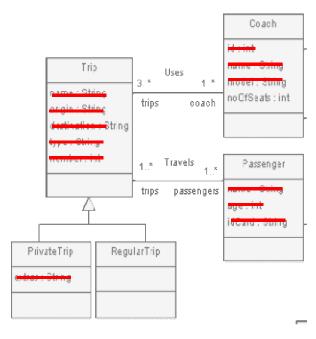
self.age >0

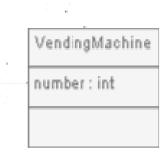
1. context Coach inv passengerSize : self.trips ->select (r|r.ocllsTypeOf(RegularTrip))->forAll(t|t.passengers ->size() noOfSeats)

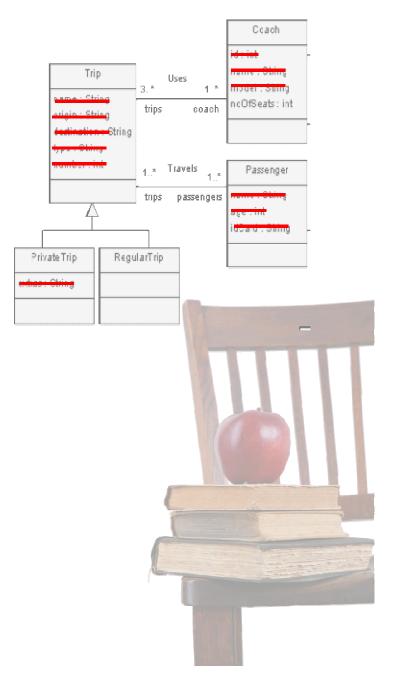


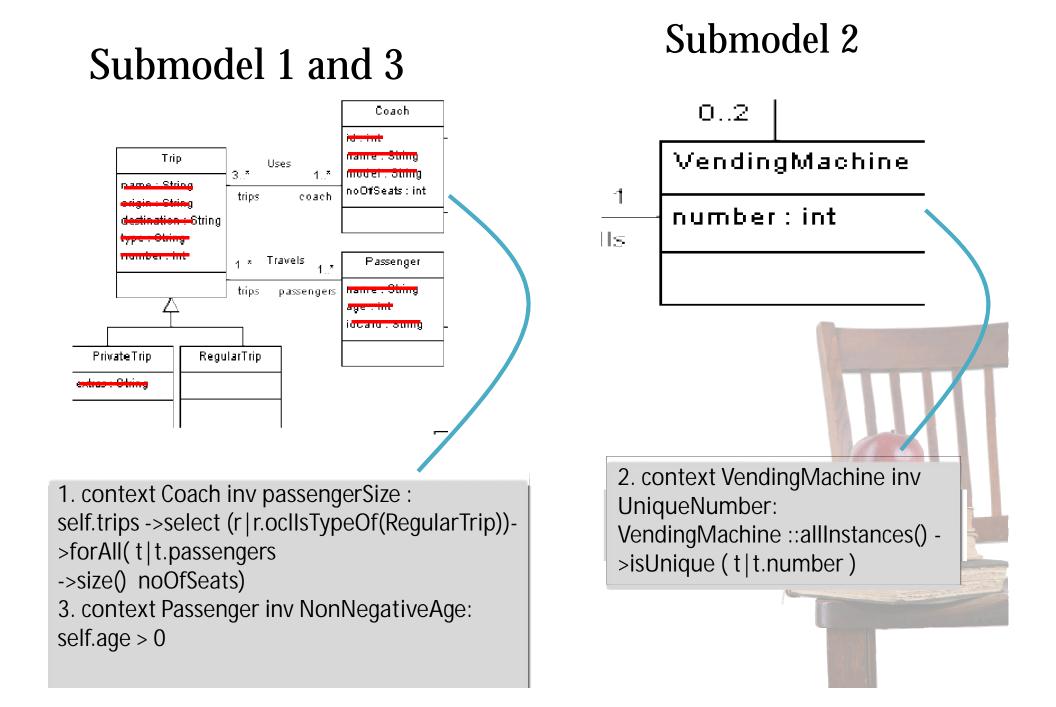

Submodel 1 0..2Coach d i int VendingMachine Trip nann a -Uses 3..^x 1..* in construction of the second name - String noOfSeats : int 1 trips coach number : int $||_{\Sigma}$ Travels 1..* Passenger. 1 [×] trips passengers \triangle age . mi ideand , eanng Private Trip RegularTrip - Chiese context VendingMachine inv context Coach inv passengerSize : UniqueNumber: self.trips ->select (r|r.ocllsTypeOf(RegularTrip))-VendingMachine ::allInstances() ->forAll(t|t.passengers >isUnique (t|t.number) ->size() noOfSeats)

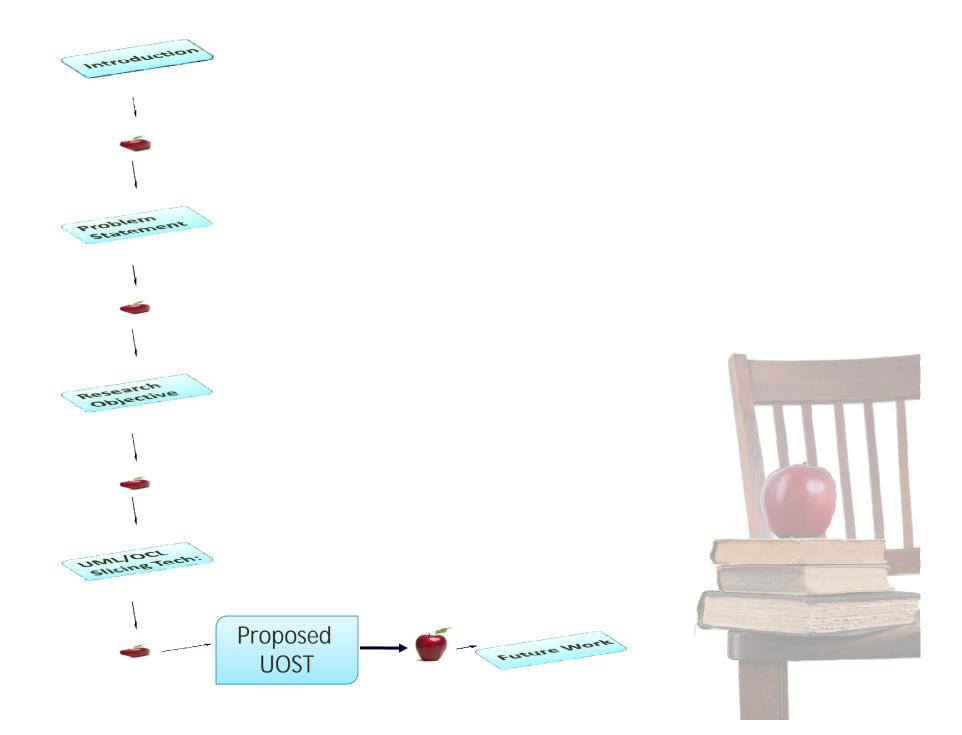
Submodel 2


Submodel 1


Submodel 1


Submodel 1




Submodel 2

Submodel 3

Example	Classes	Associations	Attributes	Invariants
Paper-Researcher	2	2	6	1
Coach	15	12	2	2
Tracking System	50	60	72	5
Script 1	100	110	122	2
Script 2	500	510	522	5
Script 3	1000	1010	1022	5

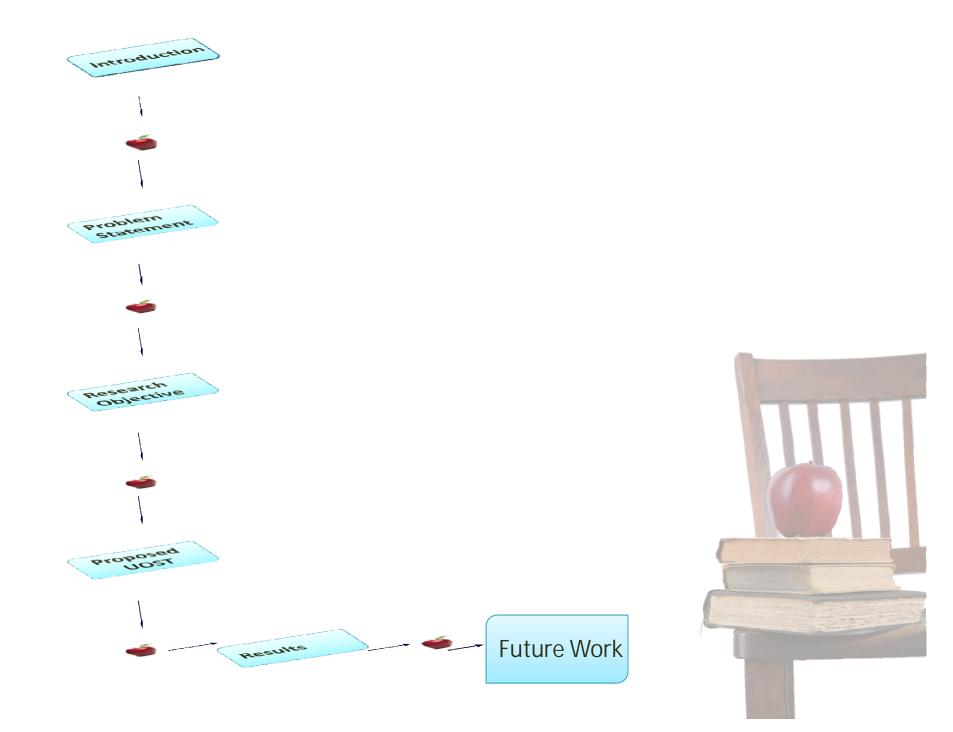
 Table 3. Description of the Examples.

)		After Sli	cing (UM	LtoCSP UOST)	
Attributes	OVT	Attributes	ST	SVT	TVT	Speedup %
6	2506.55s	3	0.00s	0.421s	0.421s	99.98%
2	5008.76s	0	0.00s	0.178s	0.178s	99.99%
72	3605.35s	55	0.016s	0.031s	0.047s	99.99%
122	Time out	117	0.016s	0.032s	0.048s	99.99%
522	Time out	502	0.062s	0.028s	0.090s	99.99%
1022	Time out	1012	0.282s	0.339s	0.621s	99.98%
al Verifica	tion Ti	me ST	Slicin	g Time		
Verificatio	on Time	TV'	Γ Total	Verification	Time	
Descriptio	n of exp	perimenta	l result	s (UMLtoCS	P).	
	Attributes 6 2 72 122 522 1022 al Verifica	AttributesOVT62506.55s25008.76s723605.35s122Time out522Time out1022Time outal Verification TimeVerification Time	AttributesOVTAttributes62506.55s325008.76s0723605.35s55122Time out117522Time out5021022Time out1012al Verification TimeSTVerification Time TV'_{10}	Attributes OVT Attributes ST 6 2506.55s 3 0.00s 2 5008.76s 0 0.00s 72 3605.35s 55 0.016s 122 Time out 117 0.016s 522 Time out 502 0.062s 1022 Time out 1012 0.282s al Verification Time ST Slicin Verification Time TVT Total	Attributes OVT Attributes ST SVT 6 2506.55s 3 0.00s 0.421s 2 5008.76s 0 0.00s 0.178s 72 3605.35s 55 0.016s 0.031s 122 Time out 117 0.016s 0.032s 522 Time out 502 0.062s 0.028s 1022 Time out 1012 0.282s 0.339s al Verification Time ST Slicing Time Verification Time TVT Total Verification	Attributes OVT Attributes ST SVT TVT 6 2506.55s 3 0.00s 0.421s 0.421s 2 5008.76s 0 0.00s 0.178s 0.178s 72 3605.35s 55 0.016s 0.031s 0.047s 122 Time out 117 0.016s 0.032s 0.048s 522 Time out 502 0.062s 0.028s 0.090s 1022 Time out 1012 0.282s 0.339s 0.621s al Verification Time ST Slicing Time Slicing Time Slicing Time

Example	Classes	Associa	ations	Attrib	utes	Invariants	
Atom-Molecule	2	2		3		2	
University	4	3		8		5	
ATM Machine	50	51	- 21	51		7	
Script 1	100	11	0	122	2	2	
Script 2	500	51	0	522	2	5	
Script 3	1000	101	11	102	8	5	
Table	e 4. Des	scription	n of th	ne Exa	mple	es.	
Before Slicing		2	After S	Slicing			
Scope	TT ST	TT+ST	STT S	ST ST1	T+SST	Γ Speedup %	
2 3	3ms 9ms	12ms	3ms 5	ms	8m	is 34%	
3 7	ms 8ms	15ms	3ms 6	m s	9m	s 40%	
4 12	2ms 8ms	$20 \mathrm{ms}$	4 ms 6	ms	10m	s 50%	
5 17	′ms 10ms	$27 \mathrm{ms}$	4ms 9	ms	13m	s 52%	
6 16	oms 15ms	31ms	5ms 9	ms	14m	s 55%	
7 19	ms 15ms	34ms	6ms 9)ms	15m	1s 56%	
\mathbf{TT} Transl	ation Tin	ne	ST	Solving	g Tin	ne	
STT Sliced	Translati	on Time	SST	Sliced	solvii	ng Time	
Table 5. Slici	ng results	s in Alloy	y for A	tom-Mo	lecul	e example.	

Example	Classes	Associ	ations	Atti	ributes	Invariants
Atom-Molecule	2	2	2		3	2
University	4	4 3			8	5
ATM Machine	50	5	1		51	7
Script 1	100	11	.0		122	2
Script 2	500	51	.0		522	5
Script 3	1000	10		1.0	022	5
Table	e 4. Des	scriptio	n of t	he E	xample	es.
Before Slicing			After 3	Slicing		
Scope	TT ST	TT+ST	STT	SST S	TT+SS1	Speedup %
2	$7 \mathrm{ms} \ 10 \mathrm{ms}$	$17 \mathrm{ms}$	$3 \mathrm{ms}$	5ms	8m	s 53%
3 14	1 ms 19 ms	33ms	$5 \mathrm{ms}$	8ms	$13 \mathrm{m}$	s 61%
4 28	8ms 20ms	$48 \mathrm{ms}$	$7 \mathrm{ms} \ 1$	$0 \mathrm{ms}$	17m	s 62%
5 30	3ms 31ms	67ms	12 ms 1	$5 \mathrm{ms}$	27m	s $65%$
6 45	oms 50ms	95ms	17 ms 1	5ms	32m	s 67%
7 81	$1 \mathrm{ms} \ 77 \mathrm{ms}$	$158 \mathrm{ms}$	34 ms 1	7ms	$51\mathrm{m}$	s 68%
TT Trans	lation Tir	ne	\mathbf{ST}	Solv	ing Tim	e
STT Sliced	Translati	ion Time	e SST	F Slice	ed solvin	g Time
Table 6. S	licing rest	ults in A	lloy for	r univ	ersity ex	ample.

Classes	Associations	Attributes	Invariants
2	2	3	2
4	3	8	5
50	51	51	7
100	110	122	2
500	510	522	5
1000	1010	1022	5
	2 4 50 100 500	2 2 4 3 50 51 100 110 500 510	4 3 8 50 51 51 100 110 122 500 510 522


Table 4. Description of the Examples.

Before Slicir	ng			After	Slicin	ng	
Scope	TT	\mathbf{ST}	TT+ST	STT	SST	STT+SST	Speedup %
2	$20 \mathrm{ms}$	$46 \mathrm{ms}$	66ms	5ms	8ms	13ms	81%
3	83ms	91ms	$174 \mathrm{ms}$	9ms	11ms	$20 \mathrm{ms}$	89%
4	96ms	$185 \mathrm{ms}$	$254 \mathrm{ms}$	13ms	11ms	$24 \mathrm{ms}$	90%
5	$158 \mathrm{ms}$	$173 \mathrm{ms}$	$332 \mathrm{ms}$	20ms	$12 \mathrm{ms}$	$32 \mathrm{ms}$	90%
6	233ms	$367 \mathrm{ms}$	$600 \mathrm{ms}$	$25 \mathrm{ms}$	23ms	$48 \mathrm{ms}$	92%
7	$325 \mathrm{ms}$	$495 \mathrm{ms}$	$820 \mathrm{ms}$	30ms	28ms	$58 \mathrm{ms}$	93%
TT T	ranslatio	n Tim	е	ST	Sol	ving Time	
STT S	liced Tra	nslatic	on Time	SS'	T Slie	ced solving	Time
Tab	le 7. Slic	ing re	sults in	Alloy	for A	TM machi	ine.

Example	Classes	Associat	tions	Attribut	tes I	nvariants
Atom-Molecule	2	2		3		2
University	4	3		8		5
ATM Machine	50	51		51		7
Script 1	100	110		122		2
Script 2	500	<mark>51</mark> 0		522		5
Script 3	1000	1010)	1022		5
Table	e 4. Des	scription	of th	ne Exam	ples	
Before Slicing			After	Slicing		
Scope	TT S	T TT+ST	STT	SST STT	+SS7	Speedup %
2 11	0 ms 133 m	ns 243ms	7ms	9ms	16m	s 93%
3 16	$1 \mathrm{ms}$ 290n	1 ns 451 ms	9ms	9ms	18m	s 96%
4 224	4 ms 591 n	ns 815ms	$14 \mathrm{ms}$	12ms	26m	s 97%
5 34	9 ms 606 n	ns 955ms	$17 \mathrm{ms}$	16ms	33m	s 97%
6 589	$9 \mathrm{ms} \ 1077 \mathrm{n}$	ns 1666 ms	$27 \mathrm{ms}$	25ms	52m	s 97%
7 79	9ms 1392n	ns 2191 ms	38ms	25ms	63m	s 97%
TT Trans	lation Ti	ne	ST	Solving	Time	e
STT Sliced	Translat	ion Time	SST	F Sliced se	olving	g Time
Table 8. Sl	icing resu	lts in Allo	y for	script 1 (100 c	classes).

Example	Classes	Associat	ions	Attribut	tes I	nvariants
Atom-Molecule	2	2		3		2
University	4	3		8		5
ATM Machine	50	51		51		7
Script 1	100	110		122		2
Script 2	500	510		522		5
Script 3	1000	1010		1022		5
Table	e 4. Des	scription	of th	ne Exam	ples	s .
Before Slicing			After	Slicing		
Scope	TT S	ST TT+ST	STT	SST STT	+SS1	Speedup %
2 1839	$9 \mathrm{ms}$ $3021 \mathrm{n}$	ms 4860ms	6ms	$7\mathrm{ms}$	13m	s 99.7%
3 256'	7ms 74891	ms 10056 ms	11ms	8ms	19m	s 99.8%
4 3374	4ms 83201	ms 11694 ms	14ms	9ms	23m	s 99.8%
5 4320	$6 ms \ 21837 ms$	ms 26163 ms	18ms	14ms	32m	s 99.8%
6 523	$1 \mathrm{ms} \ 32939$	ms 38170 ms	$25 \mathrm{ms}$	14ms	39m	s 99.8%
7 647	$7\mathrm{ms}~59704\mathrm{m}$	ms 66181 ms	$35 \mathrm{ms}$	16ms	51m	s 99.9%
TT Transl	ation Tin	ne	ST	Solving 7	Гime	
\mathbf{STT} Sliced	Translati	on Time	SST	Sliced so	lving	g Time
Table 9. Sli	cing resul	lts in Alloy	for s	script 2 (5	00 c	lasses).

2 4 50 100 500 1000 4. Des		2 3 51 110 510 1010			2 5 7 2 5
50 100 500 1000		51 110 510		51 122	7 2
100 500 1000		110 510		122	2
500 1000	Cor	510			
1000	Cri			522	5
	Cri	1010			245 B
4. Des	or			1022	5
	SCI.	iption o	f th	e Example	es.
			Afte	er Slicing	
ГТ	ST	TT+ST	STI	SST STT+S	ST Speedup
ms 12941	lms	22489ms	6m	s 8ms 14	4ms 99.93
ms 30041	lms	$39775 \mathrm{ms}$	13m	s 10ms 23	3ms 99.94
ms 66861	lms	$79357 \mathrm{ms}$	19m	s 10ms 29	99.96 ms
ms 85001	lms	$100703 \mathrm{ms}$	22m	s 13ms 35	5ms 99.96
ms 185118	Bms	$204614 \mathrm{ms}$	29m	s 16ms 45	5ms 99.97
ms 259072	2ms	282161ms	35m	s 17ms 52	2ms 99.98
tion Tin	ne	5	ST	Solving Tim	ne
Franslati	ion	Time S	ST	Sliced solvin	ng Time
ing resul	lts				<u> </u>
	ms 30041 ms 66861 ms 85001 ms 185118 ms 259072 tion Tin Franslati	ms 30041ms ms 66861ms ms 85001ms ms 185118ms ms 259072ms tion Time Franslation	ms 30041ms 39775ms ms 66861ms 79357ms ms 85001ms 100703ms ms 185118ms 204614ms ms 259072ms 282161ms tion Time S Franslation Time S	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Currently Working On...

- Feedback technique in case of any unsatisfiable submodels.
- There are 3 stages of feedback technique:
 - 1. Detect the failed submodel.
 - 2. Detect the specific failed invariant.
 - 3. Provide constructive feedback for improvement.

